Fnal

- 6 magnets measured
 - steady improvement in field quality
 - last 3 had "acceptable" field quality as built
 - ensemble (making as built corrections to first 3 magnets) also acceptable
 - issues
 - differences in field from 1 tc to the next
 - eddy currents

Fnal field quality

Plans

- short probe for fabrication measurements
- integral probe for production measurements
- ssw for alignment
- issues
 - any reason to have an absolute angular reference from rotating coil measurements (*no*)

KEK

- 3 models measured
- new model to be tested next month

```
-b6 -0.12 ($\$\$-0.20)
```

- -b10 0.001 (\$\square\$-0.84)
- differences in strength due to differences in yoke length

KEK

Plans

- probes adapted to various measurements
- can't completely measure return end
- no on the fly measurements yet
- issues
 - at how many fixed currents to measure the field (10+ for interpolation)
 - where to truncate reporting of harmonics (n=14-20)

KEK

- issues
 - is warm measurement of axis and tilt necessary (no in my opinion, may want it for redundancy, QA)
 - accelerator cycle only in prototype (?)
 - cross calibration
 - proposed to ship model to Fnal ()
 - current calibration (no conclusion)

• SSW

```
- GL a few x 10-4
```

```
- avg axis < 50 \,\mu
```

$$-$$
 true axis $< 150 \mu$

- roll 100 μ rad

- transfer to fiducials with laser tracker 50-100 μ

- new techniques
 - ac current for measuring small fields
 - use frequency of wire vibration to extrapolate to infinite tension

- tests
 - wire stretched to 16 m
 - geometry similar to Q2 measurement
 - results as expected from calculations
 - within specs
 - use of magnesium wire extrapolates the 16 m
 result to 20

- issues
 - residual field of one when measuring the other()
 - stray fields from leads ()
 - impact of Q2s on corrector alignment ()
 - absolute accuracy of alignment
 - (16 m tests only checked relative to short wire)
 - (check with conventional magnet)

CERN

- ASM
 - provides local measurement
 - **G**(z)
 - angle(z)
 - bn, an (z)
 - x, y offset (z) 120 μm
 - accommodates up to 12 m magnet

BNL 1

- described various means used for measuring axis
 - ferrofluidic cell
 - antennas
- other tools
- magnet polarity checker
- BPM antenna

BNL 1

• described scheme for "lhctripstat" which would integrate laser tracker data with ssw data

BNL 2

- roll measured to 0.2-0.3 mrad which was good enough but about as good as could be done
- had to pay attention to distortions in alignment every time a welder showed up
- cross checks on alignment measurement